September 1, 2023
In this blog post, we’ll explore some intermediate tips for designing efficient MQTT payloads for C and Python applications. MQTT (Message Queuing Telemetry Transport) is a lightweight and efficient messaging protocol that is commonly used in IoT (Internet of Things) and other networked applications. By optimizing the payloads sent over MQTT, we can improve the overall efficiency and performance of our applications. We’ll cover concepts such as data serialization, message compression, and payload size optimization, with extensive examples in both C and Python.
Understanding the MQTT Protocol
Before we delve into the tips for designing efficient MQTT payloads, it’s important to have a basic understanding of the MQTT protocol. MQTT operates on a publish-subscribe messaging model, where clients (publishers) send messages to a broker, and other clients (subscribers) receive those messages. Messages are organized into topics, and subscribers can subscribe to specific topics to receive relevant messages.
Tip 1: Data Serialization
One key aspect of designing efficient MQTT payloads is data serialization. In both C and Python, there are various serialization formats such as JSON, Protocol Buffers, and MessagePack that can be used to efficiently encode data for transmission over MQTT. Let’s take a look at an example of using JSON for data serialization in both C and Python.
C Example:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
| #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <jansson.h>
void publishData(const char *topic, const json_t *data) {
char *serialized = json_dumps(data, 0);
// Publish 'serialized' over MQTT to the specified topic
printf("Publishing JSON data: %s\n", serialized);
free(serialized);
}
int main() {
// Create a JSON object representing sensor data
json_t *sensorData = json_object();
json_object_set_new(sensorData, "temperature", json_real(25.5));
json_object_set_new(sensorData, "humidity", json_real(60.2));
// Publish the sensor data over MQTT
publishData("sensors/indoor", sensorData);
return 0;
}
|
Python Example:
1
2
3
4
5
6
7
8
9
10
11
12
| import json
def publish_data(topic, data):
serialized = json.dumps(data)
# Publish 'serialized' over MQTT to the specified topic
print(f"Publishing JSON data: {serialized}")
# Create a dictionary representing sensor data
sensor_data = {"temperature": 25.5, "humidity": 60.2}
# Publish the sensor data over MQTT
publish_data("sensors/indoor", sensor_data)
|
In the examples above, we use the JSON serialization format to encode sensor data before publishing it over MQTT.
Tip 2: Message Compression
Another technique to improve the efficiency of MQTT payloads is message compression. By compressing the payload before transmission, we can reduce the amount of data sent over the network. Let’s see how we can apply message compression in C and Python.
C Example (using zlib):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
| #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <zlib.h>
void publishCompressedData(const char *topic, const unsigned char *data, size_t dataLen) {
// Compress the data using zlib
unsigned long compressedLen = compressBound(dataLen);
unsigned char *compressed = (unsigned char *)malloc(compressedLen);
compress(compressed, &compressedLen, data, dataLen);
// Publish the compressed data over MQTT to the specified topic
printf("Publishing compressed data: %s\n", compressed);
free(compressed);
}
int main() {
// Create a buffer representing sensor data
unsigned char sensorData[] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF};
size_t dataLen = sizeof(sensorData);
// Publish the compressed sensor data over MQTT
publishCompressedData("sensors/outdoor", sensorData, dataLen);
return 0;
}
|
Python Example (using zlib library):
1
2
3
4
5
6
7
8
9
10
11
12
| import zlib
def publish_compressed_data(topic, data):
compressed = zlib.compress(data)
# Publish the compressed data over MQTT to the specified topic
print(f"Publishing compressed data: {compressed}")
# Create a bytes object representing sensor data
sensor_data = bytes([0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF])
# Publish the compressed sensor data over MQTT
publish_compressed_data("sensors/outdoor", sensor_data)
|
In the examples above, we use the zlib library to compress the sensor data before publishing it over MQTT.
Tip 3: Payload Size Optimization
Lastly, optimizing the size of MQTT payloads can significantly improve the efficiency of message transmission. This can be achieved by reducing unnecessary data, using smaller data types, and minimizing the overall payload size. Let’s see how we can optimize payload size in C and Python.
C Example:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
| #include <stdio.h>
#include <string.h>
struct SensorData {
float temperature;
float humidity;
};
void publishOptimizedData(const char *topic, const struct SensorData *data) {
// Publish the optimized data over MQTT to the specified topic
printf("Publishing optimized sensor data: temperature=%.1f, humidity=%.1f\n", data->temperature, data->humidity);
}
int main() {
// Create a struct representing sensor data
struct SensorData sensorData = {25.5, 60.2};
// Publish the optimized sensor data over MQTT
publishOptimizedData("sensors/kitchen", &sensorData);
return 0;
}
|
Python Example:
1
2
3
4
5
6
7
8
9
10
11
12
13
| # Create a named tuple representing sensor data
from collections import namedtuple
SensorData = namedtuple('SensorData', ['temperature', 'humidity'])
def publish_optimized_data(topic, data):
# Publish the optimized data over MQTT to the specified topic
print(f"Publishing optimized sensor data: temperature={data.temperature}, humidity={data.humidity}")
# Create a named tuple representing sensor data
sensor_data = SensorData(25.5, 60.2)
# Publish the optimized sensor data over MQTT
publish_optimized_data("sensors/kitchen", sensor_data)
|
In the examples above, we optimize the payload size by using smaller and more efficient data structures to represent sensor data before publishing it over MQTT.
Conclusion
In this blog post, we’ve explored some intermediate tips for designing efficient MQTT payloads for C and Python applications. By leveraging data serialization, message compression, and payload size optimization, we can improve the overall performance and efficiency of our MQTT-based applications. With the extensive examples provided, you should be well-equipped to apply these tips in your own projects and achieve optimal payload design for MQTT communication.
Happy coding!
Go back to Posts.